Laporan Penelitian

PENGgunaan METODE REGRESI ROBUST UNTUK MENCAiri SELANG KEPERCAYAAN KOEFISIEN GARIS REGRESI JIKA RAGAM GALAT TIDAK HOMOGEN

Oleh:
Dra. Harmi Sugiarli, M.Si
Dra. Andi Megawarni, M.Ed

Lembaga Penelitian Universitas Terbuka 2003
LEMBAR PENGESAHAN
Laporan Penelitian Lembaga Penelitian-UT

1. a. Judul Penelitian : Penggunaan Metode Regresi Robust untuk Mencari Selang Kepercayaan Koefisien Regresi Jika Ragam Galat Tidak Homogen
 b. Bidang Penelitian : Bidang Ilmu
 c. Klasifikasi Penelitian : Penelitian Mandiri
 d. Bidang Ilmu Statistika : Statistika

2. Ketua Peneliti
 b. NIP : 131 976 080
 c. Golongan Kepangkatan : III/b
 d. Jabatan Akademik : Asisten Ahli
 e. Fakultas/ Unit Kerja : FMIPA

3. Anggota Tim Peneliti
 a. Jumlah Anggota : 1 (satu) orang

4. Lama Penelitian
 : 8 (delapan) bulan

5. Biaya Penelitian
 : Rp. 4.695.000,-
 (Empat Juta Enam Ratus Sembilan Puluh Lima Ribu Rupiah)

6. Sumber Biaya
 : Lembaga Penelitian UT

Mengetahui,
Dekan FMIPA-UT

[Signature]
Dr. Ir. D. Djokosetiyanto
NIP. 130 536 671

Mengetahui,
Ketua Lembaga Penelitian UT

[Signature]
Dr. Edal S. Winataputra, MA
NIP. 130 667 151

Pondok cbe, 28 Maret 2003

Ketua Peneliti,

[Signature]
Dra. Harmi Sugiarti, M.Si
NIP. 131 976 080

Menyebutui,
Kepala Pusat Studi Indonesia

[Signature]
Duri Andriani, Ph.D
NIP. 131 569 965
ABSTRAK

Bidang Ilmu : Statistika
Judul : Penggunaan Metode Regresi Robust untuk Mencari Selang Kepercayaan Koefisien Regresi Jika Ragam Galat Tidak Homogen
Penulis : Sugiarti, H. ; Megawarni, A.
Tahun : 2003
Sumber Abstraksi : Laporan Hasil Penelitian
Lokasi Laporan : Lembaga Penelitian, Perpustakaan Universitas Terbuka

Asumsi ragam galat homogen diperlukan oleh metode OLS untuk mendapatkan penduga koefisien garis regresi yang bersifat tak bias linear terbaik (best linear unbiased estimation, BLUE). Tidak dipenuhinya asumsi kehomogenan ragam galat dalam penggunaan metode OLS dapat mengakibatkan kekurangannya ketelitian dalam pendugaan selang bagi koefisien garis regresi. Penanganan kasus ketidakhomogenan ragam galat kadangkala diikuti munculnya penyimpangan asumsi lainnya, diantaranya adalah munculnya pengamatan pencilan (outlier) dalam data.

Penelitian ini bertujuan untuk menguji penggunaan metode OLS, metode WLS, dan metode regresi robust dalam mencari selang kepercayaan koefisien garis regresi apabila ragam galat tidak homogen.

Data yang digunakan dalam penelitian adalah data hasil simulasi dengan menggunakan paket program MINITAB dan data hasil eksperimen, yang berupa data rata-rata panjang daun (cm) tanaman temulawak (Curtuma Xanthorrhiza Roxb.) pada unur 17 minggu yang diberi pupuk kandang pada berbagai taraf (tanpa pupuk, 0,5 kg/lubang, 1 kg/lubang) dan ditanam pada dua variasi jarak tanam (60x40 cm dan 60x60 cm).

Hasil pengamatan menunjukkan bahwa lebar selang dengan koefisien kepercayaan 99% selalu lebih lebar dari pada selang dengan koefisien kepercayaan 95% baik untuk metode OLS, metode WLS, dan metode regresi robust. Metode regresi robust menghasilkan selang kepercayaan untuk koefisien regresi lebih sempit dibanding metode OLS, tetapi lebih lebar dibanding metode WLS.
DAFTAR ISI

LEMBAR PENGESAHAN ... i
ABSTRAK .. ii
DAFTAR ISI .. iii
DAFTAR TABEL ... iv

I. PENDAHULUAN ... 1
 A. Latar Belakang ... 1
 B. Tujuan Penelitian ... 2
 C. Manfaat Penelitian .. 2

II. TINJAUAN PUSTAKA .. 3
 A. Selang Kepercayaan ... 3
 B. Metode Regresi Robust .. 4

III. METODOLOGI ... 7
 A. Data .. 7
 B. Metode .. 7

IV. HASIL DAN PEMBAHASAN .. 9
 A. Hasil Simulasi .. 9
 B. Hasil Eksperimen ... 13

V. KESIMPULAN DAN SARAN .. 18

DAFTAR PUSTAKA
Tabel 1.	Data Galat	...	9
Tabel 2.	Data Simulasi	..	10
Tabel 3.	Penduga Koefisien Regresi Data Simulasi	..	11
Tabel 4.	Simpangan Baku Penduga Koefisien Regresi Data Simulasi	11
Tabel 5.	Lebar Selang Kepercayaan 95% untuk Koefisien Regresi Data Simulasi	..	12
Tabel 6.	Lebar Selang Kepercayaan 99% untuk Koefisien Regresi Data Simulasi	..	12
Tabel 7.	Data Eksperimen	..	13
Tabel 8.	Penduga Koefisien Regresi Data Eksperimen dengan Konsentrasi Pupuk sebagai Pembobot	..	14
Tabel 9.	Simpangan Baku Penduga Koefisien Regresi Data Eksperimen dengan konsentrasi Pupuk sebagai Pembobot	..	14
Tabel 10.	Lebar Selang Kepercayaan 95% untuk Koefisien Regresi Data Eksperimen dengan Konsentrasi Pupuk sebagai Pembobot	..	14
Tabel 11.	Lebar Selang Kepercayaan 99% untuk Koefisien Regresi Data Eksperimen dengan Konsentrasi Pupuk sebagai Pembobot	..	15
Tabel 12.	Penduga Koefisien Regresi Data Eksperimen dengan Jarak Tanam sebagai Pembobot	..	15
Tabel 13.	Simpangan Baku Penduga Koefisien Regresi Data Eksperimen dengan Jarak Tanam sebagai Pembobot	..	16
Tabel 14.	Lebar Selang Kepercayaan 95% untuk Koefisien Regresi Data Eksperimen dengan Jarak Tanam sebagai Pembobot	..	16
Tabel 15.	Lebar Selang Kepercayaan 99% untuk Koefisien Regresi Data Eksperimen dengan Jarak Tanam sebagai Pembobot	..	17
I. PENDAHULUAN

A. Latar Belakang

Asumsi ragam galat homogen \((\sigma^2(\varepsilon_i) = \sigma^2)\) diperlukan oleh metode kuadrat terkecil (ordinary least square, OLS) untuk mendapatkan penduga parameter yang bersifat tak bias linear terbaik (best linear unbiased estimator, BLUE) dari model regresi \(Y_i = \beta_0 + \beta_1X_{i1} + \beta_2X_{i2} + \ldots + \beta_pX_{ip} + \varepsilon_i, \quad i = 1, 2, \ldots, n\). \(Y_i\) adalah nilai peubah respons pada pengamatan ke-\(i\), \(X_i\) adalah nilai peubah bebas pada pengamatan ke-\(i\) dan \(\beta_0, \beta_1, \ldots, \beta_p\) adalah koefisien regresi yang tidak diketahui nilainya dan akan dicari nilai taksisirannya.

Dalam hal asumsi ragam galat homogen tidak dipenuhi, salah satu metode alternatif yang dapat dicoba adalah metode kuadrat terkecil tertimbang (weighted least square, WLS). Metode ini menghasilkan lebar selang kepercayaan untuk koefisien garis regresi lebih sempit dibanding metode OLS (Sugiarti, 2001).

Penanganan kasus ketidakhomogenan ragam galat kadangkala diikuti munculnya penyimpangan asumsi lainnya, diantaranya adalah munculnya pengamatan pencil (outlier) dalam data. Adanya pengamatan pencil dalam data dapat mengakibatkan penduga koefisien garis regresi yang diperoleh tidak tepat. Namun demikian tindakan membuang (menolak) begitu saja suatu pengamatan pencil bukanlah tindakan yang bijaksana, karena adakalanya pengamatan pencil memberikan informasi yang cukup berarti.
Disamping adanya faktor kesulitan penentuan pembobot \(w_i = \frac{1}{\sigma^2} \) karena besarnya \(\sigma^2 \) tidak diketahui, penggunaan metode WLS masih belum dapat mereduksi munculnya pengamatan pencalan. Untuk mengatasi kelemahan-kelemahan dari metode yang ada, baik metode OLS maupun metode WLS, perlu dikembangkan metode lain yang bersifat tidak sensitif terhadap pelanggaran asumsi-asumsi, yaitu metode regresi robust (robust regression).

B. Tujuan Penelitian

Penelitian ini bertujuan untuk membandingkan lebar selang kepercayaan koefisien garis regresi yang diperoleh metode regresi robust dengan lebar selang kepercayaan koefisien garis regresi yang diperoleh metode OLS dan metode WLS.

C. Manfaat Penelitian

Penelitian ini diharapkan dapat memberi masukan tentang penggunaan metode regresi robust dalam mencari selang kepercayaan untuk koefisien garis regresi, jika terdapat penyimpangan asumsi ragam galat tidak homogen.
II. TINJAUAN PUSTAKA

A. Selang Kepercayaan

Selang kepercayaan adalah suatu kisaran nilai yang dianggap mengandung nilai parameter populasi yang sebenarnya. Batas bawah (B) dan batas atas (A) selang tersebut dihitung dari suatu sampel acak yang ditarik dari populasi bersangkutan. Oleh karena itu sebelum penarikan sampel dilakukan, B dan A merupakan besaran acak.

Untuk setiap pilihan yang wajar atas kedua batas itu selalu ada peluang positif bahwa selang kepercayaannya akan gagal mencakup nilai parameter yang sebenarnya. Sebelum percobaan dilakukan, terlebih dahulu ditetapkan nilai koefisien kepercayaannya (*confidence coefficient*). Koefisien ini menetapkan peluang bahwa selang kepercayaannya akan mencakup nilai parameter yang sebenarnya. Oleh karena itu kita menginginkan peluang tersebut sedekat mungkin dengan 1.

Misalkan kita memilih koefisien kepercayaan (1-\(\alpha\)). maka selang kepercayaan yang dihasilkan akan dinamakan selang kepercayaan (1-\(\alpha\))100\% bagi suatu parameter. Besaran B dan A dikatakan menentukan selang kepercayaan (1-\(\alpha\)) 100\% bagi suatu parameter apabila memenuhi kriteria berikut:

a) \(P(B \leq \text{nilai parameter yang sebenarnya} \leq A) \geq (1-\alpha)\) dan

b) nilai-nilai B dan A dapat dihitung dari sampel telah diambil dari populasi.
Tingkat kepercayaan \((1-\alpha)100\%\) mengandung arti apabila percobaan pengambilan sampel acak dengan ukuran tertentu yang sama dari suatu populasi dan perhitungan nilai B dan A diulang berkali-kali, maka \((1-\alpha)100\%\) dari selang kepercayaan yang dihasilkan akan mengandung nilai parameter yang sebenarnya \((B \leq \mu \leq A)\). Selang kepercayaan yang cukup baik adalah selang kepercayaan yang mempunyai lebar selang yang sempit dan persentase selang yang memuat parameter cukup besar (Koopmans, 1987).

B. Metode Regresi Robust

Prosedur regresi robust dirancang untuk mengurangi pengaruh dari pengamatan-pengamatan yang mempunyai pengaruh tinggi jika metode kuadrat terkecil digunakan. Oleh karena itu, prosedur regresi robust cenderung untuk mengabaikan sisa-sisaan yang berhubungan dengan pencilan-pencilan yang besar. Disamping tidak sensitif jika terdapat kasus pencilan, prosedur regresi robust mempunyai tingkat efisiensi yang sama 90%-95% dibanding kuadrat terkecil jika dibawah distribusi normal (Montgomery & Peck, 1992).

Menurut Staudte & Sheather, jika hubungan linear antara satu peubah respon dengan peubah-peubah bebasnya dimodelkan sebagai: \(Y_i = X_i^T \beta + \varepsilon_i\), dimana \(X_i^T\) menyatakan baris ke-i dari matriks rancangan \(X\), \(\beta\) menyatakan parameter model dan \(\varepsilon_i\) menyatakan suku galo; maka penaksir kemungkinan maksimum atau penaksir-M (\(M\)-estimator) \(\hat{\beta}_M\) untuk model dengan \(p\) parameter diperoleh dengan cara meminimukannya \(\sum \rho(x_i, \varepsilon_i) = \sum \rho(x_i, y_i - x_i^T \hat{\beta}_M)\) atau
mencari penyelesaian dari persamaan \(\sum x_i \eta(x_i, y_i - x_i^T \hat{\beta}_p) = 0 \), dimana
\(\eta(x_i, e) = \rho(x_i, e) \) untuk berbagai fungsi konveks \(\rho(x_i, e) \) yang dapat diterunkan dan memenuhi \(\eta(x, 0) = 0 \). Karena penduga \(\hat{\beta}_p \) yang diperoleh ini bukan merupakan skala invariant, yaitu jika sisian \((e_i = y_i - x_i^T \hat{\beta}_p) \) digandakan dengan suatu konstanta, penyelesaian yang diperoleh menjadi tidak sama seperti sebelumnya, maka untuk mendapatkan skala invariant digunakan nilai \(\frac{e_i}{\sigma} \) sebagai pengganti \(e_i \), dimana \(\sigma \) adalah faktor skala yang juga perlu ditaksir. Dengan demikian persamaan \(\sum x_i \eta(x_i, y_i - x_i^T \hat{\beta}_p) = 0 \) dapat ditulis menjadi persamaan

\[
\sum x_i \Psi \left(\frac{x_i^T \hat{\beta}_p}{\sigma} \right) = \sum x_i \Psi \left(\frac{y_i - x_i^T \hat{\beta}_p}{\sigma} \right) = \sum (y_i - x_i^T \hat{\beta}_p) x_i w_i = 0, \quad \text{dimana } w,
\]

adalah fungsi pembobot yang bernilai antara 0 dan 1 dengan

\[
w_i = \Psi \left(\frac{x_i^T \hat{\beta}_p}{\sigma} \right) = \frac{\psi \left(\frac{e_i}{\sigma} \right)}{e_i / \sigma}. \quad \text{Secara umum pembobot } w \text{, dirumuskan sebagai }
\]

\[
w_i = \Psi \left(\frac{x_i^T \hat{\beta}_p}{\sigma} \right) = w \left(\frac{x_i e_i}{\sigma} \right) = \frac{\sigma v(x_i)}{e_i} \psi \left(\frac{e_i}{\sigma v(x_i)} \right), \quad \text{dimana } \Psi,
\]

adalah influence function dan \(v(x_i) \) adalah suatu fungsi yang tidak diketahui dan tergantung pada \(x \) melalui leveragenya. Dengan menentukan nilai

\[
v(x_i) = \frac{(1-h_{ii})}{\sqrt{h_{ii}}} \quad \text{dan } \hat{\sigma} = s_i \text{ serta memilih fungsi Huber } \Psi, \text{ yang berbentuk:}
\]
\[\Psi_i \left(\frac{e_i}{\sigma v(x_i)} \right) = \begin{cases} c, \text{ jika } \frac{e_i}{\sigma v(x_i)} > c \\ \frac{e_i}{\sigma v(x_i)}, \text{ jika } \left| \frac{e_i}{\sigma v(x_i)} \right| \leq c, \text{ maka nilai pembobot } w_i \text{ menjadi } \\ -c, \text{ jika } \frac{e_i}{\sigma v(x_i)} < c \end{cases} \]

tergantung pada kombinasi besarnya leverage dan studentized residual melalui DFFITS. Secara singkat nilai pembobot \(w_i \) dapat dinyatakan dalam bentuk:
\[w_i = w \left(x_i, \frac{e_i}{\sigma} \right) = \min \left(\frac{2 \sqrt{p/n}}{|DFFITS|}, 1 \right). \]
Jadi persamaan \(\sum (y_i - x_i' \hat{\beta}_i)w_i, x_i = 0 \) dapat ditulis dalam bentuk matriks \(X'WX\hat{\beta} = X'\hat{W}Y \) yang kita kenal sebagai persamaan normal kuadrat terkecil tertimbang dengan \(W \) adalah matriks diagonal yang berisi pembobot. Solusi persamaan normal tersebut akan memberikan taksiran untuk \(\beta \) yaitu: \(\hat{\beta} = (X'WX)^{-1}(X'WY) \) dan penaksir-M untuk \(\beta \) diperoleh dengan cara melakukan iterasi sampai diperoleh suatu hasil yang konvergen, cara ini biasa dikenal sebagai metode kuadrat terkecil tertimbang secara iteratif (iteratively reweighted least square).

dan disebut juga metode robust.

Berdasarkan pembobot \(\hat{w}_i \) dan penaksir-M parameter \(\hat{\beta} \), matriks kovarians untuk parameter \(\hat{\beta} \) yaitu: \(\Sigma_n \) dapat didekati dengan persamaan berikut:
\[\Sigma_n = \frac{1}{n-p}(X' \hat{D}_s X)'(X' \hat{D}_s X)^{-1}, \]
dimana \(\hat{D}_s \) adalah matriks diagonal dengan elemen-elemen diagonalnya \(\Psi_i \left(\frac{e_i}{\sigma v(x_i)} \right) \) dan \(\hat{D}_s \) adalah matriks diagonal dengan elemen-elemen diagonalnya \(\hat{w}_i c_i^2 \). Selanjut kepercayaan \((1-\alpha)100\%\) untuk parameter \(\beta \) diperoleh sebagai: \(\hat{\beta} \pm \xi_{\alpha/2}, n(\hat{\beta}) \) (Staudte, 1990).
III. METODOLOGI

A. Data

Data yang dipergunakan dalam penelitian ini adalah:

1. data simulasi, yaitu data yang dibangkitkan dengan bantuan paket program MINITAB versi 11.12

2. data eksperimen, yaitu berupa data rata-rata panjang daun (cm) tanaman temulaswak (Curcuma xanthorrhiza Roxb.) pada umur 17 minggu yang diberi pupuk kandang pada berbagai taraf yaitu: tanpa pupuk, 0.5 kg/lubang, 1 kg/lubang dan ditanam pada variasi jarak tanam 60 x 40 cm dan 60 x 60 cm (Priono, 1988).

B. Metode

Langkah pertama yang harus dilakukan adalah mencari galat (ε) yang memenuhi kriteria nilai rataan nol dan ragam tidak homogen. Galat tersebut dapat diperoleh dengan cara membangkitkan data. Pembangkitan galat dikelompokkan ke dalam tiga kelompok dengan setiap kelompok mempunyai rataan nol dan ragam berbeda-beda.

Langkah ke dua adalah menentukan nilai-nilai peubah bebas X_1 dan X_2, karena X_1 dan X_2 adalah konstanta yang diketahui. Nilai-nilai dari koefisien regresi yaitu β diasumsikan dengan nilai tertentu. Dari nilai-nilai yang telah diketahui, dapat dicari nilai peubah respons sebagai $Y = X\beta + \varepsilon$.

7
Langkah ke tiga adalah menguji apakah dari pasangan data X_1, X_2 dan Y diperoleh ragam galat yang tidak homogen. Apabila hasil uji menyatakan ragam galat tidak homogen, maka pasangan data X_1, X_2 dan Y dengan rataan galat nol dan ragam galat tidak homogen telah diperoleh.

Langkah ke empat, setelah pasangan data X_1, X_2 dan Y yang mempunyai rataan galat nol dan ragam galat tidak homogen telah diperoleh, selanjutnya dilakukan pendugaan koefisien regresi dengan metode regresi robust dan mencari selang kepercayaan bagi β.

Langkah ke lima, membandingkan antara lebar selang kepercayaan yang diperoleh metode regresi robust dengan lebar selang kepercayaan yang diperoleh metode OLS dan metode WLS.

Langkah ke enam adalah mengulang langkah ke empat dan ke lima untuk data eksperimen.
IV. HASIL DAN PEMBAHASAN

A. Hasil Simulasi

Sebanyak tiga kelompok galat \((e_1, e_2, e_3)\) dibangkitkan secara terpisah dengan software MINITAB, dimana masing-masing kelompok berisi sepuluh galat. Pada kelompok 1, galat dibangkitkan secara acak dari distribusi normal dengan mean 0 dan variansi 1. Pada kelompok 2, galat dibangkitkan secara acak dari distribusi normal dengan mean 0 dan variansi 9. Dan pada kelompok 3, galat dibangkitkan secara acak dari distribusi normal dengan mean 0 dan variansi 25. Adapun data dari ketiga puluh galat tersebut dapat dilihat pada Tabel 1 berikut ini.

<table>
<thead>
<tr>
<th>(\varepsilon_1)</th>
<th>(\varepsilon_2)</th>
<th>(\varepsilon_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.02759</td>
<td>-0.08276</td>
<td>-0.13795</td>
</tr>
<tr>
<td>0.65870</td>
<td>1.97610</td>
<td>3.29350</td>
</tr>
<tr>
<td>-1.26903</td>
<td>-5.80709</td>
<td>-6.54511</td>
</tr>
<tr>
<td>1.83219</td>
<td>5.49058</td>
<td>9.16096</td>
</tr>
<tr>
<td>-0.50565</td>
<td>-1.51694</td>
<td>-2.52823</td>
</tr>
<tr>
<td>-1.05007</td>
<td>-3.09022</td>
<td>-5.15096</td>
</tr>
<tr>
<td>-1.35382</td>
<td>-4.06147</td>
<td>-6.76912</td>
</tr>
<tr>
<td>0.60968</td>
<td>1.82908</td>
<td>3.04839</td>
</tr>
<tr>
<td>0.34867</td>
<td>1.64601</td>
<td>2.74535</td>
</tr>
<tr>
<td>0.49285</td>
<td>1.47856</td>
<td>2.46427</td>
</tr>
</tbody>
</table>

Data galat gabungan \((\varepsilon)\) dan peubah bebas \(X_1\) dan \(X_2\) hasil simulasi dapat dilihat pada Tabel 2. Dengan mengasumsikan \(\beta_0 = 0\), \(\beta_1 = 1\) dan \(\beta_2 = 1\), maka diperoleh data \(Y = X_1 + X_2 + \varepsilon\). Pasangan data \(X_1\), \(X_2\) dan \(Y\) dapat dilihat pada Tabel 2.
Dengan menggunakan pasangan data \(X_1, X_2\) dan \(Y\), metode regresi robust memberikan penduga bagi koefisien regresi yaitu \(\hat{\beta}_0 = 2.28129\), \(\hat{\beta}_1 = 0.96812\) dan \(\hat{\beta}_2 = 0.98205\). Sedangkan simpangan baku penduga koefisien regresinya mempunyai nilai dugaan \(s(\hat{\beta}_0) = 1.72501\), \(s(\hat{\beta}_1) = 0.02226\) dan \(s(\hat{\beta}_2) = 0.01736\).

<table>
<thead>
<tr>
<th>Pengamatan</th>
<th>(Y)</th>
<th>(X_1)</th>
<th>(X_2)</th>
<th>(e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>100.972</td>
<td>48</td>
<td>53</td>
<td>-0.02759</td>
</tr>
<tr>
<td>2.</td>
<td>121.659</td>
<td>95</td>
<td>26</td>
<td>0.65870</td>
</tr>
<tr>
<td>3.</td>
<td>41.731</td>
<td>42</td>
<td>1</td>
<td>-1.20902</td>
</tr>
<tr>
<td>4.</td>
<td>109.832</td>
<td>62</td>
<td>46</td>
<td>1.83219</td>
</tr>
<tr>
<td>5.</td>
<td>55.494</td>
<td>34</td>
<td>-22</td>
<td>-0.50565</td>
</tr>
<tr>
<td>6.</td>
<td>26.970</td>
<td>17</td>
<td>11</td>
<td>-1.05007</td>
</tr>
<tr>
<td>7.</td>
<td>111.646</td>
<td>23</td>
<td>90</td>
<td>-1.35582</td>
</tr>
<tr>
<td>8.</td>
<td>112.610</td>
<td>62</td>
<td>50</td>
<td>0.60968</td>
</tr>
<tr>
<td>9.</td>
<td>107.549</td>
<td>83</td>
<td>24</td>
<td>0.54867</td>
</tr>
<tr>
<td>10.</td>
<td>170.493</td>
<td>79</td>
<td>91</td>
<td>0.49285</td>
</tr>
<tr>
<td>11.</td>
<td>353.917</td>
<td>42</td>
<td>62</td>
<td>-0.08276</td>
</tr>
<tr>
<td>12.</td>
<td>32.976</td>
<td>18</td>
<td>13</td>
<td>1.97609</td>
</tr>
<tr>
<td>13.</td>
<td>121.393</td>
<td>89</td>
<td>96</td>
<td>-3.80707</td>
</tr>
<tr>
<td>14.</td>
<td>53.497</td>
<td>8</td>
<td>40</td>
<td>5.49658</td>
</tr>
<tr>
<td>15.</td>
<td>88.483</td>
<td>76</td>
<td>14</td>
<td>-1.51694</td>
</tr>
<tr>
<td>16.</td>
<td>34.910</td>
<td>2</td>
<td>36</td>
<td>-3.09022</td>
</tr>
<tr>
<td>17.</td>
<td>55.939</td>
<td>57</td>
<td>23</td>
<td>-4.06147</td>
</tr>
<tr>
<td>18.</td>
<td>95.829</td>
<td>5</td>
<td>89</td>
<td>1.82904</td>
</tr>
<tr>
<td>19.</td>
<td>50.646</td>
<td>21</td>
<td>28</td>
<td>1.64600</td>
</tr>
<tr>
<td>20.</td>
<td>138.479</td>
<td>48</td>
<td>89</td>
<td>1.47855</td>
</tr>
<tr>
<td>21.</td>
<td>170.862</td>
<td>83</td>
<td>88</td>
<td>-0.14795</td>
</tr>
<tr>
<td>22.</td>
<td>54.293</td>
<td>40</td>
<td>11</td>
<td>3.29348</td>
</tr>
<tr>
<td>23.</td>
<td>77.655</td>
<td>60</td>
<td>24</td>
<td>-3.45111</td>
</tr>
<tr>
<td>24.</td>
<td>67.161</td>
<td>30</td>
<td>28</td>
<td>9.16097</td>
</tr>
<tr>
<td>25.</td>
<td>134.472</td>
<td>37</td>
<td>100</td>
<td>-2.52823</td>
</tr>
<tr>
<td>26.</td>
<td>134.850</td>
<td>66</td>
<td>74</td>
<td>-5.15037</td>
</tr>
<tr>
<td>27.</td>
<td>144.231</td>
<td>69</td>
<td>82</td>
<td>-6.76911</td>
</tr>
<tr>
<td>28.</td>
<td>81.048</td>
<td>67</td>
<td>11</td>
<td>3.04846</td>
</tr>
<tr>
<td>29.</td>
<td>83.743</td>
<td>55</td>
<td>26</td>
<td>2.74334</td>
</tr>
<tr>
<td>30.</td>
<td>100.464</td>
<td>37</td>
<td>61</td>
<td>2.46426</td>
</tr>
</tbody>
</table>

Jika dibandingkan nilai-nilai penduga bagi koefisien regresi yang diperoleh metode regresi robust dengan metode OLS dan metode WLS, tampak nilai-nilai
penduga bagi koefisien regresi yang diperoleh dengan metode regresi robust terletak diantara nilai-nilai penduga bagi koefisien regresi yang diperoleh dengan metode OLS dan metode WLS. Secara ringkas penduga koefisien regresi yang dihasilkan oleh ketiga metode tersebut disajikan dalam Tabel 3 berikut ini.

<table>
<thead>
<tr>
<th>Koefisien Regresi</th>
<th>OLS</th>
<th>WLS</th>
<th>Robust</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{\beta}_0$</td>
<td>2.39600</td>
<td>-0.93610</td>
<td>2.28129</td>
</tr>
<tr>
<td>$\hat{\beta}_1$</td>
<td>0.96714</td>
<td>1.01526</td>
<td>0.96812</td>
</tr>
<tr>
<td>$\hat{\beta}_2$</td>
<td>0.98137</td>
<td>1.00505</td>
<td>0.98205</td>
</tr>
</tbody>
</table>

Demikian juga dengan simpangan baku penduga koefisien regresinya, pada Tabel 4 ditunjukkan bahwa nilai-nilai simpangan baku penduga koefisien regresi yang diperoleh dengan metode regresi robust terletak diantara nilai-nilai simpangan baku penduga bagi koefisien regresi yang diperoleh dengan metode OLS dan metode WLS.

<table>
<thead>
<tr>
<th>Koefisien Regresi</th>
<th>OLS</th>
<th>WLS</th>
<th>Robust</th>
</tr>
</thead>
<tbody>
<tr>
<td>$s(\hat{\beta}_0)$</td>
<td>1.55700</td>
<td>0.76870</td>
<td>1.72501</td>
</tr>
<tr>
<td>$s(\hat{\beta}_1)$</td>
<td>0.02383</td>
<td>0.01140</td>
<td>0.02226</td>
</tr>
<tr>
<td>$s(\hat{\beta}_2)$</td>
<td>0.02049</td>
<td>0.01005</td>
<td>0.01736</td>
</tr>
</tbody>
</table>

Lebar selang kepercayaan 95% untuk koefisien regresi yang diperoleh dengan metode OLS, metode WLS dan metode regresi robust disajikan dalam Tabel 5. Pada tabel tersebut tampak bahwa selang untuk koefisien regresi $\hat{\beta}_1$ dan $\hat{\beta}_2$ yang dihasilkan oleh metode regresi robust lebih sempit dibanding metode
OLS sedangkan metode WLS menghasilkan selang yang paling sempit diantara ketiga metode.

<table>
<thead>
<tr>
<th>Koefisien Regresi</th>
<th>OLS</th>
<th>WLS</th>
<th>Robust</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{\beta}_0$</td>
<td>6.3899</td>
<td>3.1548</td>
<td>7.0794</td>
</tr>
<tr>
<td>$\hat{\beta}_1$</td>
<td>0.0978</td>
<td>0.0468</td>
<td>0.0914</td>
</tr>
<tr>
<td>$\hat{\beta}_2$</td>
<td>0.0841</td>
<td>0.0413</td>
<td>0.0713</td>
</tr>
</tbody>
</table>

Lebar selang kepercayaan 99% untuk koefisien regresi yang diperoleh dengan metode OLS, metode WLS dan metode regresi robust disajikan dalam Tabel 6. Pada tabel tersebut tampak bahwa selang untuk koefisien regresi $\hat{\beta}_1$ dan $\hat{\beta}_2$ yang dihasilkan oleh metode regresi robust lebih sempit dibanding metode OLS sedangkan metode WLS menghasilkan selang yang paling sempit diantara ketiga metode. sedangkan lebar selang kepercayaan 99% untuk koefisien regresi yang diperoleh dengan metode OLS, metode WLS dan metode regresi robust disajikan dalam Tabel 6 berikut ini.

<table>
<thead>
<tr>
<th>Koefisien Regresi</th>
<th>OLS</th>
<th>WLS</th>
<th>Robust</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{\beta}_0$</td>
<td>8.6289</td>
<td>4.2601</td>
<td>9.5600</td>
</tr>
<tr>
<td>$\hat{\beta}_1$</td>
<td>0.1321</td>
<td>0.0632</td>
<td>0.1234</td>
</tr>
<tr>
<td>$\hat{\beta}_2$</td>
<td>0.1136</td>
<td>0.0557</td>
<td>0.0962</td>
</tr>
</tbody>
</table>

Tabel 5 dan Tabel 6 menunjukkan bahwa selang kepercayaan 95% untuk koefisien garis regresi lebih sempit dibanding selang kepercayaan 99% untuk koefisien garis regresi yang dihasilkan metode OLS, metode WLS dan metode regresi robust.
B. Hasil Eksperimen

Dengan menggunakan data eksperimen pada Tabel 7 tentang rata-rata panjang daun tanaman temulawak berumur 17 minggu (Y) yang diberi pupuk kandang pada tiga taraf (X₁) dan ditanam pada dua variasi jarak tanam (X₂), metode regresi robust memberikan penduga bagi koefisien regresi yaitu \(\hat{\beta}_0 = 61.5178 \), \(\hat{\beta}_1 = 19.3309 \) dan \(\hat{\beta}_2 = -0.1394 \). Sedangkan simpangan baku penduga koefisien regresinya mempunyai nilai dugaan \(s(\hat{\beta}_0) = 12.8986 \), \(s(\hat{\beta}_1) = 6.7357 \) dan \(s(\hat{\beta}_2) = 0.2455 \).

<table>
<thead>
<tr>
<th>Tabel 7. Data Eksperimen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pengamatan</td>
</tr>
<tr>
<td>1.</td>
</tr>
<tr>
<td>2.</td>
</tr>
<tr>
<td>3.</td>
</tr>
<tr>
<td>4.</td>
</tr>
<tr>
<td>5.</td>
</tr>
<tr>
<td>6.</td>
</tr>
<tr>
<td>7.</td>
</tr>
<tr>
<td>8.</td>
</tr>
<tr>
<td>9.</td>
</tr>
<tr>
<td>10.</td>
</tr>
<tr>
<td>11.</td>
</tr>
<tr>
<td>12.</td>
</tr>
<tr>
<td>13.</td>
</tr>
<tr>
<td>14.</td>
</tr>
<tr>
<td>15.</td>
</tr>
<tr>
<td>16.</td>
</tr>
<tr>
<td>17.</td>
</tr>
<tr>
<td>18.</td>
</tr>
</tbody>
</table>

Jika konsentrasi pupuk digunakan sebagai pembobot pada metode WLS, maka nilai-nilai penduga bagi koefisien regresi yang diperoleh dengan metode OLS, metode WLS dan metode regresi robust disajikan dalam Tabel 8 berikut ini.
Tabel 8. Penduga Koefisien Regresi Data Eksperimen dengan Konsentrasi Pupuk sebagai Pembobot

<table>
<thead>
<tr>
<th>Koefisien Regresi</th>
<th>OLS</th>
<th>WLS</th>
<th>Robust</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{\beta}_0)</td>
<td>39.0400</td>
<td>54.0710</td>
<td>61.5178</td>
</tr>
<tr>
<td>(\hat{\beta}_1)</td>
<td>31.5900</td>
<td>34.3810</td>
<td>19.3309</td>
</tr>
<tr>
<td>(\hat{\beta}_2)</td>
<td>0.2693</td>
<td>-0.0405</td>
<td>-0.1394</td>
</tr>
</tbody>
</table>

Pada Tabel 9 ditunjukkan bahwa nilai-nilai simpangan baku penduga koefisien regresi yang diperoleh dengan metode regresi robust terletak diantara nilai-nilai simpangan baku penduga bagi koefisien regresi yang diperoleh dengan metode OLS dan metode WLS.

Tabel 9. Simpangan Baku Penduga Koefisien Regresi Data Eksperimen dengan Konsentrasi Pupuk sebagai Pembobot

<table>
<thead>
<tr>
<th>Koefisien Regresi</th>
<th>OLS</th>
<th>WLS</th>
<th>Robust</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s(\hat{\beta}_0))</td>
<td>27.2500</td>
<td>4.2910</td>
<td>12.8986</td>
</tr>
<tr>
<td>(s(\hat{\beta}_1))</td>
<td>12.7300</td>
<td>3.2870</td>
<td>6.7557</td>
</tr>
<tr>
<td>(s(\hat{\beta}_2))</td>
<td>0.5197</td>
<td>0.0822</td>
<td>0.2455</td>
</tr>
</tbody>
</table>

Lebar selang kepercayaan 95% untuk koefisien regresi yang diperoleh dengan metode OLS, metode WLS dan metode regresi robust disajikan dalam Tabel 10. Pada tabel tersebut tampak bahwa selang kepercayaan untuk koefisien regresi \(\hat{\beta}_1 \) dan \(\hat{\beta}_2 \) yang dihasilkan oleh metode regresi robust lebih sempit dibanding metode OLS sedangkan metode WLS menghasilkan selang yang paling sempit diantara ketiga metode.

Tabel 10. Lebar Selang Kepercayaan 95% untuk Koefisien Regresi Data Eksperimen dengan Konsentrasi Pupuk sebagai Pembobot

<table>
<thead>
<tr>
<th>Koefisien Regresi</th>
<th>OLS</th>
<th>WLS</th>
<th>Robust</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{\beta}_0)</td>
<td>116.1395</td>
<td>18.2882</td>
<td>54.9738</td>
</tr>
<tr>
<td>(\hat{\beta}_1)</td>
<td>54.2553</td>
<td>14.0092</td>
<td>28.7076</td>
</tr>
<tr>
<td>(\hat{\beta}_2)</td>
<td>2.2150</td>
<td>0.3502</td>
<td>1.0463</td>
</tr>
</tbody>
</table>
Lebar selang kepercayaan 99% untuk koefisien regresi yang diperoleh dengan metode OLS, metode WLS dan metode regresi robust disajikan dalam Tabel 11. Pada tabel tersebut tampak bahwa selang kepercayaan untuk koefisien regresi \(\hat{\beta}_0 \), \(\hat{\beta}_1 \), dan \(\hat{\beta}_2 \) yang dihasilkan oleh metode regresi robust lebih sempit dibanding metode OLS sedangkan metode WLS menghasilkan selang yang paling sempit diantara ketiga metode.

<table>
<thead>
<tr>
<th>Koefisien Regresi</th>
<th>OLS</th>
<th>WLS</th>
<th>Robust</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{\beta}_0)</td>
<td>160.6115</td>
<td>25.2912</td>
<td>76.0244</td>
</tr>
<tr>
<td>(\hat{\beta}_1)</td>
<td>75.0506</td>
<td>19.3736</td>
<td>39.7002</td>
</tr>
<tr>
<td>(\hat{\beta}_2)</td>
<td>3.0631</td>
<td>0.4845</td>
<td>1.4470</td>
</tr>
</tbody>
</table>

Tabel 10 dan Tabel 11 menunjukkan bahwa selang kepercayaan 95% untuk koefisien garis regresi lebih sempit dibanding selang kepercayaan 99% untuk koefisien garis regresi yang dihasilkan metode OLS, metode WLS dan metode regresi robust.

Jika digunakan jarak tanam sebagai pembobot pada metode WLS, maka nilai-nilai penduga bagi koefisien regresi yang diperoleh dengan metode OLS, metode WLS dan metode regresi robust disajikan dalam Tabel 12 berikut ini.

<table>
<thead>
<tr>
<th>Koefisien Regresi</th>
<th>OLS</th>
<th>WLS</th>
<th>Robust</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{\beta}_0)</td>
<td>39.0400</td>
<td>44.8700</td>
<td>61.5178</td>
</tr>
<tr>
<td>(\hat{\beta}_1)</td>
<td>31.5900</td>
<td>19.9350</td>
<td>19.3309</td>
</tr>
<tr>
<td>(\hat{\beta}_2)</td>
<td>0.2693</td>
<td>0.2693</td>
<td>-0.1394</td>
</tr>
</tbody>
</table>
Pada Tabel 13 ditunjukkan bahwa nilai-nilai simpangan baku penduga koefisien regresi yang diperoleh dengan metode regresi robust terletak diantara nilai-nilai simpangan baku penduga bagi koefisien regresi yang diperoleh dengan metode OLS dan metode WLS. Khusus untuk \(\hat{\beta}_0 \), metode regresi robust menghasilkan simpangan baku paling kecil diantara keguna metode.

<table>
<thead>
<tr>
<th>Koefisien Regresi</th>
<th>OLS</th>
<th>WLS</th>
<th>Robust</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s(\hat{\beta}_0))</td>
<td>27.2500</td>
<td>20.9600</td>
<td>12.8986</td>
</tr>
<tr>
<td>(s(\hat{\beta}_1))</td>
<td>12.7300</td>
<td>2.5750</td>
<td>6.7557</td>
</tr>
<tr>
<td>(s(\hat{\beta}_2))</td>
<td>0.5197</td>
<td>0.5198</td>
<td>0.2455</td>
</tr>
</tbody>
</table>

Lebar selang kepercayaan 95% untuk koefisien regresi yang diperoleh dengan metode OLS, metode WLS dan metode regresi robust disajikan dalam Tabel 14. Pada tabel tersebut tampak bahwa selang untuk koefisien regresi yang dihasilkan oleh metode regresi robust lebih sempit dibanding metode OLS sedangkan metode WLS menghasilkan selang yang paling sempit diantara ketiga metode kecuali pada selang kepercayaan untuk \(\hat{\beta}_2 \), dimana metode regresi robust menghasilkan selang paling sempit diantara ketiga metode tersebut.

<table>
<thead>
<tr>
<th>Koefisien Regresi</th>
<th>OLS</th>
<th>WLS</th>
<th>Robust</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{\beta}_0)</td>
<td>116.1395</td>
<td>89.3315</td>
<td>54.9738</td>
</tr>
<tr>
<td>(\hat{\beta}_1)</td>
<td>54.2553</td>
<td>10.9747</td>
<td>28.7076</td>
</tr>
<tr>
<td>(\hat{\beta}_2)</td>
<td>2.2150</td>
<td>2.2154</td>
<td>1.0463</td>
</tr>
</tbody>
</table>

Lebar selang kepercayaan 99% untuk koefisien regresi yang diperoleh dengan metode OLS, metode WLS dan metode regresi robust disajikan dalam
Tabel 15. Pada tabel tersebut tampak bahwa selang untuk koefisien regresi yang dihasilkan oleh metode regresi robust lebih sempit dibanding metode OLS sedangkan metode WLS menghasilkan selang yang paling sempit diantara ketiga metode kecuali pada selang untuk \(\hat{\beta}_1 \), dimana metode regresi robust menghasilkan selang paling sempit diantara ketiga metode tersebut.

<table>
<thead>
<tr>
<th>Koefisien Regresi</th>
<th>OLS</th>
<th>WLS</th>
<th>Robust</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{\beta}_0)</td>
<td>160.6115</td>
<td>123.5382</td>
<td>76.0244</td>
</tr>
<tr>
<td>(\hat{\beta}_1)</td>
<td>75.0306</td>
<td>15.1771</td>
<td>39.7002</td>
</tr>
<tr>
<td>(\hat{\beta}_2)</td>
<td>3.0631</td>
<td>5.0587</td>
<td>1.4470</td>
</tr>
</tbody>
</table>

Tabel 14 dan Tabel 15 menunjukkan bahwa selang kepercayaan 95% untuk koefisien garis regresi lebih sempit dibanding selang kepercayaan 99% untuk koefisien garis regresi yang dihasilkan metode OLS, metode WLS dan metode regresi robust.
V. KESIMPULAN DAN SARAN

Kesimpulan

Baik metode OLS, metode WLS, dan metode regresi robust memberikan selang kepercayaan 95% untuk koefisien garis regresi lebih sempit dibanding selang kepercayaan 99% untuk koefisien garis regresi, hal ini disebabkan karena semakin tinggi koefisien kepercayaan yang digunakan, maka nilai sebaran t dan z nya semakin besar.

Lebar selang yang dihasilkan oleh metode regresi robust secara keseluruhan lebih sempit dibanding selang yang dihasilkan metode OLS tetapi sedikit lebih lebar dibanding selang yang dihasilkan metode WLS.

Saran

Perlu dilakukan penelitian lanjutan untuk mendapatkan pembobot yang lebih sesuai pada metode regresi robust dalam menangani kasus kehomogenan ragam galat pada data.

