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Abstract. In this paper, we motivate and introduce probabilistic soft sets and dual probabilistic 

soft sets for handling decision making problem in the presence of positive and negative 

parameters. We propose several types of algorithms related to this problem. Our procedures are 

flexible and adaptable. An example on real data is also given. 

1. Introduction 

Decision making with positive and negative attributes has been investigated carefully in various fields. 

For example, in consumer relationship management, a company collects information about consumers 

complaints to get to know the market sensing [1]. Another example, one needs to combine the opposite 

criteria such as benefits versus costs, and opportunities versus risks using analytic hierarchy process 

approach to solve it [2]. 

One of the theories that can handle decision making problem is soft set theory. The main advantage 

of soft set is its high flexibility in describing problem. In soft set, we may use various forms of 

parameterization to describe an object [3]. Many scholars proposed various extended soft sets to deal 

with decision making problems under uncertainty [4-14]. Nevertheless, soft set theory has not been 

applied in decision making with positive and negative parameters until what Alcantud & Mathew [6] 

did. They proposed separable fuzzy soft sets. Fatimah et al. [7] explicated that probabilistic soft sets and 

dual probabilistic soft sets could be considered as fuzzy soft sets with an additional structure. Hence, we 

propose several algorithms of the probabilistic soft sets and dual probabilistic soft sets for handling this 

issue. 

This paper is organized as follows. Section 2 recalls the basic definitions of soft set, probabilistic soft 

set, and dual probabilistic soft set. In Section 3, we propose decision making algorithms for positive and 

negative parameters using probabilistic soft sets and dual probabilistic soft sets. An application oriented 

real data is given in Section 4. We conclude in Section 5. 

2. Soft set, probabilistic soft set, and dual probabilistic soft set 

In this section, we recall the definitions of soft set, probabilistic soft set, and dual probabilistic soft set. 

Let 𝑈 as a set of objects, 𝐸 be a set of parameters where 𝑈, 𝐸 are nonempty finite sets, and 𝐴 ⊆ 𝐸. 

 

Definition 1 [3] A soft set (𝐹, 𝐴) over 𝑈 is defined as a mapping from set 𝐴 to the power set of 𝑈, i.e. 

𝐹: 𝐴 → 2𝑈.  
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In other words, a soft set is considered as a parameterized family of subsets of 𝑈. Considering an 

example [3],  𝑈 is a set of houses and 𝐸 be a set of parameters as follows: expensive, beautiful, wooden, 

cheap, in the green surroundings, modern, in good repair, and in bad repair. Soft set (𝐹, 𝐸) means that 

the characteristic of houses 𝑈 is evaluated based on parameters 𝐸. In this example, we can see that some 

parameters may be regarded as negative i.e. ‘expensive’, and ‘in bad repair’.  

Zhu [14] introduced an extended model of soft set theory combining probabilistic and soft set. It was 

called a probabilistic soft set. Its definition as follows. 

 

Definition 2 [14] A probabilistic soft set (𝐹, 𝐴) over 𝑈 is defined as a mapping from set 𝐴 to the power 

set of probability distributions 𝐷(𝑈), i.e. 𝐹: 𝐴 → 𝐷(𝑈). 

Equivalenty [7], a probabilistic soft set is defined by 𝐹(𝑒𝑗) ∈ 𝐷(𝑈) , ∀𝑒𝑗 ∈ 𝐴. Therefore for 𝑖 =

1,2, … , 𝑚 and 𝑗 = 1,2, … , 𝑛, it can be stated as 𝐹(𝑒𝑗) = 𝑃(𝑎𝑖𝑗)/(𝑢𝑖) where ∑ 𝑃(𝑎𝑖𝑗) = 1𝑚
𝑖=1 , 0 ≤

𝑃(𝑎𝑖𝑗) ≤ 1.  

 

Definition 3 [7] A dual probabilistic soft set  (𝐹, 𝑈) over 𝐴 is defined as a mapping from set 𝑈 to the 

power set of probability distributions 𝐷(𝐴), i.e. 𝐹: 𝑈 → 𝐷(𝐴). 

Thus, a dual probabilistic soft set can be denoted by 𝐹(𝑢𝑖) ∈ 𝐷(𝐴), ∀𝑢𝑖 ∈ 𝑈. It implies that 𝐹(𝑢𝑖) =
𝑃(𝑎𝑖𝑗)/(𝑒𝑗) where ∑ 𝑃(𝑎𝑖𝑗) = 1𝑛

𝑗=1 , 0 ≤ 𝑃(𝑎𝑖𝑗) ≤ 1.  

Soft set, probabilistic soft sets, and dual probabilistic soft sets could be represented in tabular forms. 

Rows indicate objects 𝑈, and columns indicate parameters 𝐴. In a soft set, all cells are either 0 or 1. 

Then, in probabilistic soft sets and dual probabilistic soft sets, all cells are in interval [0,1] with 

requirements as in the explanation of Definitions 2 & 3 mentioned above. 

3. Generalization of probabilistic soft sets and dual probabilistic soft sets algorithms 

Fatimah et al [7] discussed about the concepts of probabilistic soft sets and dual probabilistic soft sets. 

They proposed decision making algorithms which were appropriate for positive parameters. In relation 

to this assumption, decision makers may meet with both positive and negative parameters or just 

consider negative ones. In order to accommodate all needs of the decision makers, we introduce 

generalization of probabilistic soft sets and dual probabilistic soft sets algorithms which are extension 

forms of the algorithms in Fatimah et al [7]. These mechanisms are applicable for both positive and 

negative parameters.  

All our algorithms use the same first step (input) as follows.  

Step 1. Input a set of objects 𝑈 = {𝑢𝑖, 𝑖 = 1,2, … , 𝑚}, and a set of parameters  𝐸 = {𝑒𝑗, 𝑗 = 1,2, … , 𝑛}, 

𝐴 ⊆ 𝐸.  

i. For the probabilistic soft sets, input a table of (𝐹, 𝐴) and let 𝑃(𝑎𝑖𝑗) = 𝐹(𝑒𝑗)(𝑢𝑖) be the 

entries of its tabular representation whereby ∑ 𝑃(𝑎𝑖𝑗)𝑚
𝑖=1 = 1 for 𝑗 = 1,2, … , 𝑛. 

ii. For the dual probabilistic soft sets, input a table of (𝐹, 𝑈) and let 𝑃(𝑎𝑖𝑗) = 𝐹(𝑢𝑖)(𝑒𝑗) be 

the entries of its tabular representation whereby ∑ 𝑃(𝑎𝑖𝑗)𝑛
𝑗=1 = 1 for 𝑖 = 1,2, … , 𝑚. 

 

Algorithm 1 Generalization of Probabilistic Soft Sets-Choice Values (GPSS-CV) 

Step 2. For all  𝑖 = 1,2, … , 𝑚, find choice values (𝑐𝑖)  by using an operation table as follows: 

i. If A means a set of positive parameters then 𝑐𝑖 = ∑ 𝑃(𝑎𝑖𝑗).𝑛
𝑗=1  

ii. If A means a set of negative parameters then 𝑐𝑖 = ∑ −𝑃(𝑎𝑖𝑗).𝑛
𝑗=1  

iii. If 𝐴 has both positive and negative parameters then 𝑐𝑖 = 𝑐𝑝𝑜𝑠 + 𝑐𝑛𝑒𝑔 where 𝑐𝑝𝑜𝑠 =

∑ 𝑃(𝑎𝑖𝑗)𝑟  and 𝑐𝑛𝑒𝑔 = ∑ −𝑃(𝑎𝑖𝑗)𝑠  for all 𝑟 positive parameters and 𝑠 negative 

parameters. 

Step 3. Find the decision:  
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i. For a single decision, find 𝑘 for which 𝑐𝑘 = 𝑚𝑎𝑥𝑖=1,…,𝑚𝑐𝑖. Then 𝑢𝑘 is the optimal 

choice object. If 𝑐𝑖 attains its maximum value at more than one index 𝑘, then any one 

of them could be chosen by decision maker. 

ii. For multiple decisions, rank decisions 𝑢𝑖 from the highest to lowest 𝑐𝑖.  

 

Algorithm 2 Generalization of Probabilistic Soft Sets-Minimax (GPSS-M) 

Step 2. Find  𝑀𝑗 as follows: 

i. If A means a set of positive parameters then 𝑀𝑗 is the maximum for each column 𝑒𝑗. 

ii. If A means a set of negative parameters then 𝑀𝑗 is the minimum for each column 𝑒𝑗. 

iii. If A has both positive and negative parameters then 𝑀𝑗 is the maximum for each column 

𝑒𝑗 which means positive and 𝑀𝑗 is the minimum for otherwise. 

Step 3. Make a new table where every cell is obtained from the previous table (Step 1) by subtracting 

the corresponding cell in that table from the 𝑀𝑗 at its column. 

Step 4. Find the maximum of each row 𝑢𝑖. It is denoted by 𝑀𝑖𝑛𝑖𝑚𝑎𝑥𝑖. 

Step 5. Find the decision: 

i. For a single decision, find 𝑘 for which 𝑀𝑖𝑛𝑖𝑚𝑎𝑥𝑘 = 𝑚𝑖𝑛𝑖=1,…,𝑚𝑀𝑖𝑛𝑖𝑚𝑎𝑥𝑖. Then 𝑢𝑘 

is the optimal choice object. If we obtain more than one index 𝑘 then any one of 𝑢𝑘 

could be chosen by decision maker. 

ii. For multiple decisions, rank decisions 𝑢𝑖 from the lowest to highest 𝑀𝑖𝑛𝑖𝑚𝑎𝑥𝑖.  

 

Algorithm 3 Generalization of Probabilistic Soft Sets-Opportunity Cost (GPSS-OC) 

Step 2. Find  𝑀𝑗 as follows: 

i. If A means a set of positive parameters then 𝑀𝑗 is the maximum for each column 𝑒𝑗. 

ii. If A means a set of negative parameters then 𝑀𝑗 is the minimum for each column 𝑒𝑗. 

iii. If A has both the positive and negative parameters then 𝑀𝑗 is the maximum for each 

column 𝑒𝑗 which means positive and 𝑀𝑗 is the minimum for otherwise. 

Step 3. Make a new table where every cell is obtained from the previous table (Step 1) by subtracting 

the corresponding cell in that table from the 𝑀𝑗 at its column. 

Step 4. Find the opportunity cost (𝑂𝐶𝑖) values as a sum of each row 𝑢𝑖 for 𝑖 = 1,2, … , 𝑚. 

Step 5. Find the decision: 

i. For a single decision, find 𝑘 for which 𝑂𝐶𝑘 = 𝑚𝑖𝑛𝑖=1,…,𝑚𝑂𝐶𝑖. Then 𝑢𝑘 is the optimal 

choice object. If we obtain more than one index 𝑘 then any one of 𝑢𝑘 could be chosen 

by decision maker. 

ii. For multiple decisions, rank decisions 𝑢𝑖 from the lowest to highest 𝑂𝐶𝑖.  

 

Algorithm 4 Generalization of Probabilistic Soft Sets-Weighted Choice Values (GPSS-WCV) 

Step 2. Make a table according to the weighted parameters 𝑊 = {𝑤𝑗, 𝑗 = 1,2, … , 𝑛}  i.e., 𝑃𝑤𝑗
(𝑎𝑖𝑗) =

𝑃(𝑎𝑖𝑗) × 𝑤𝑗, ∀𝑗.  

Step 3. For all  𝑖 = 1,2, … , 𝑚, find weighted choice values (𝑤𝑐𝑖)  by using an operation table as follows: 

i. If A means a set of positive parameters then 𝑤𝑐𝑖 = ∑ 𝑃𝑤𝑗
(𝑎𝑖𝑗).𝑛

𝑗=1  

ii. If A means a set of negative parameters then 𝑤𝑐𝑖 = ∑ −𝑃𝑤𝑗
(𝑎𝑖𝑗).𝑛

𝑗=1  

iii. If 𝐴 has both positive and negative parameters then 𝑤𝑐𝑖 = 𝑤𝑐𝑝𝑜𝑠 + 𝑤𝑐𝑛𝑒𝑔 where 

𝑤𝑐𝑝𝑜𝑠 = ∑ 𝑃𝑤𝑗
(𝑎𝑖𝑗)𝑟  and 𝑤𝑐𝑛𝑒𝑔 = ∑ −𝑃𝑤𝑗

(𝑎𝑖𝑗)𝑠  for all 𝑟 positive parameters and 𝑠 

negative parameters. 

Step 2. Find the decision: 
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i. For a single decision, find 𝑘 for which 𝑤𝑐𝑘 = 𝑚𝑎𝑥𝑖=1,…,𝑚𝑤𝑐𝑖. Then 𝑢𝑘 is the optimal 

choice object. If we obtain more than one index 𝑘 then any one of 𝑢𝑘 could be chosen 

by decision maker. 

ii. For multiple decisions, rank decisions 𝑢𝑖 from the highest to lowest 𝑤𝑐𝑖.  

 

Algorithm 5 Generalization of Probabilistic Soft Sets-Weighted Minimax (GPSS-WM) 

Step 2. Make a table according to the weighted parameters 𝑊 = {𝑤𝑗, 𝑗 = 1,2, … , 𝑛}  i.e., 𝑃𝑤𝑗
(𝑎𝑖𝑗) =

𝑃(𝑎𝑖𝑗) × 𝑤𝑗, ∀𝑗.  

Step 3. Find  𝑤𝑀𝑗 as follows: 

i. If A means a set of positive parameters then 𝑤𝑀𝑗 is the maximum for each column 𝑒𝑗. 

ii. If A means a set of negative parameters then 𝑤𝑀𝑗 is the minimum for each column 𝑒𝑗. 

iii. If A has both the positive and negative parameters then 𝑤𝑀𝑗 is the maximum for each 

column 𝑒𝑗 which means positive and 𝑤𝑀𝑗 is the minimum for otherwise. 

Step 4. Make a new table where every cell is obtained from the previous table (Step 1) by subtracting 

the corresponding cell in that table from the 𝑤𝑀𝑗 at its column. 

Step 5. Find the maximum of each row 𝑢𝑖. It is denoted by 𝑤𝑀𝑖𝑛𝑖𝑚𝑎𝑥𝑖. 

Step 6. Find the decision: 

i. For a single decision, find 𝑘 for which 𝑤𝑀𝑖𝑛𝑖𝑚𝑎𝑥𝑘 = 𝑚𝑖𝑛𝑖=1,…,𝑚𝑤𝑀𝑖𝑛𝑖𝑚𝑎𝑥𝑖. Then 

𝑢𝑘 is the optimal choice object. If we obtain more than one index 𝑘 then any one of 𝑢𝑘 

could be chosen by decision maker. 

ii. For multiple decisions, rank decisions 𝑢𝑖 from the lowest to highest 𝑤𝑀𝑖𝑛𝑖𝑚𝑎𝑥𝑖.  

 

Algorithm 6 Generalization of Probabilistic Soft Sets-Weighted Opportunity Cost (GPSS-WOC) 

Step 2. Make a table according to the weighted parameters 𝑊 = {𝑤𝑗, 𝑗 = 1,2, … , 𝑛}  i.e., 𝑃𝑤𝑗
(𝑎𝑖𝑗) =

𝑃(𝑎𝑖𝑗) × 𝑤𝑗, ∀𝑗.  

Step 3. Find  𝑤𝑀𝑗 as follows: 

i. If A means a set of positive parameters then 𝑤𝑀𝑗 is the maximum for each column 𝑒𝑗. 

ii. If A means a set of negative parameters then 𝑤𝑀𝑗 is the minimum for each column 𝑒𝑗. 

iii. If A has both the positive and negative parameters then 𝑤𝑀𝑗 is the maximum for each 

column 𝑒𝑗 which means positive and 𝑤𝑀𝑗 is the minimum for otherwise. 

Step 4. Make a new table where every cell is obtained from the previous table (Step 1) by subtracting 

the corresponding cell in that table from the 𝑤𝑀𝑗 at its column. 

Step 5. Find the weighted opportunity cost (𝑤𝑂𝐶𝑖) values as a sum of each row 𝑢𝑖 for 𝑖 = 1,2, … , 𝑚. 

Step 6. Find the decision: 

i. For a single decision, find 𝑘 for which 𝑤𝑂𝐶𝑘 = 𝑚𝑖𝑛𝑖=1,…,𝑚𝑤𝑂𝐶𝑖. Then 𝑢𝑘 is the 

optimal choice object. If we obtain more than one index 𝑘 then any one of 𝑢𝑘 could be 

chosen by decision maker. 

ii. For multiple decisions, rank decisions 𝑢𝑖 from the lowest to highest 𝑤𝑂𝐶𝑖.  

 

Algorithm 7 Generalization of Probabilistic Soft Sets & Dual Probabilistic Soft Sets-Positive Matrices  

Step 2. For all  𝑖 = 1,2, … , 𝑚, and 𝑝𝑖𝑗 denotes every cell (𝑖, 𝑗) then use an operation table as follows: 

i. If 𝑒𝑗 is a negative parameter then 𝑝𝑖𝑗 = −𝑃(𝑎𝑖𝑗). 

ii. If 𝑒𝑗 is a positive parameter then 𝑝𝑖𝑗 = 𝑃(𝑎𝑖𝑗). 

Step 3. Construct a matrix 𝐶 = (𝑐𝑖𝑗)
𝑚×𝑚

where: 

i. If 𝑖 ≠ 𝑗, 𝑐𝑖𝑗 is the number of parameters for which the value of 𝑢𝑖 is strictly greater than the 

value of 𝑢𝑗. Thus, 𝑐𝑖𝑗 is the number of parameters 𝑗 for which 𝑝𝑖𝑗 − 𝑝𝑚𝑗 > 0, or the number 

of positive values in the finite sequence 𝑝𝑖1 − 𝑝𝑚1, 𝑝𝑖2 − 𝑝𝑚2, … , 𝑝𝑖𝑛 − 𝑝𝑚𝑛. 
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ii. If 𝑖 = 𝑗, 𝑐𝑖𝑗 = 𝑛(𝑚 − 1) − 𝑡𝑗 where 𝑡𝑗 = ∑{𝑐𝑞𝑗: 𝑞 ≠ 𝑗, 𝑞 = 1, … , 𝑚} is the sum of the 

nondiagonal elements in column 𝑗 of 𝐶. This means that we define 𝑐𝑖𝑖 as the number such 

that column 𝑖 in 𝐶 sums up to 𝑛(𝑚 − 1). 

Step 4. Compute one eigenvector 𝐻 = (𝐻1, … . , 𝐻𝑘) associated with the dominant eigenvalue of the 

matrix which is 𝑛(𝑚 − 1). 
Step 5. Find the decision:  

i. For a single decision, find 𝑘 for which 𝐻𝑘 = 𝑚𝑎𝑥𝑖=1,…,𝑚𝐻𝑖. Then 𝑢𝑘 is the optimal choice 

object. If 𝐻𝑖 attains its maximum value at more than one index 𝑘, then any one of them 

could be chosen by decision maker. 

ii. For multiple decisions, rank decisions 𝑢𝑖 from the highest to lowest 𝐻𝑖. 

 

4.  An application oriented real data sets 

In the following example, we use a real case study to apply one of our algorithms. The real data sets are 

from Statistical Yearbook of Indonesia 2016, BPS-Statistics Indonesia [15].  

Table 1 Distribution of household’s population 

 𝒆𝟏 𝒆𝟐 𝒆𝟑 𝒆𝟒 𝒆𝟓 𝒆𝟔 𝒆𝟕 𝒆𝟖 𝒆𝟗 𝒆𝟏𝟎 Total 

𝒖𝟏 0.064 0.056 0.345 0.313 0.092 0.064 0.023 0.039 0.004 0.001 1 

𝒖𝟐 0.143 0.180 0.329 0.135 0.047 0.079 0.032 0.030 0.023 0.001 1 

𝒖𝟑 0.117 0.050 0.345 0.206 0.079 0.100 0.068 0.017 0.017 0.002 1 

𝒖𝟒 0.005 0.104 0.460 0.164 0.070 0.010 0.004 0.009 0.174 0.000 1 

𝒖𝟓 0.106 0.026 0.226 0.286 0.178 0.011 0.009 0.053 0.104 0.001 1 

𝒖𝟔 0.172 0.058 0.182 0.351 0.105 0.020 0.013 0.045 0.053 0.001 1 

𝒖𝟕 0.090 0.042 0.136 0.241 0.360 0.059 0.051 0.016 0.002 0.002 1 

𝒖𝟖 0.021 0.067 0.187 0.421 0.228 0.036 0.027 0.007 0.006 0.000 1 

𝒖𝟗 0.016 0.085 0.520 0.275 0.086 0.002 0.009 0.003 0.003 0.000 1 

𝒖𝟏𝟎 0.116 0.010 0.661 0.121 0.050 0.023 0.015 0.002 0.002 0.000 1 

𝒖𝟏𝟏 0.144 0.145 0.706 0.004 0.000 0.000 0.000 0.000 0.000 0.001 1 

𝒖𝟏𝟐 0.070 0.211 0.352 0.193 0.038 0.092 0.040 0.003 0.001 0.001 1 

𝒖𝟏𝟑 0.148 0.176 0.169 0.298 0.038 0.129 0.031 0.004 0.006 0.001 1 

𝒖𝟏𝟒 0.115 0.086 0.223 0.470 0.026 0.029 0.007 0.000 0.044 0.000 1 

𝒖𝟏𝟓 0.095 0.237 0.237 0.259 0.024 0.121 0.020 0.004 0.003 0.000 1 

𝒖𝟏𝟔 0.053 0.258 0.462 0.108 0.048 0.029 0.033 0.004 0.003 0.000 1 

𝒖𝟏𝟕 0.256 0.070 0.390 0.052 0.010 0.162 0.021 0.010 0.031 0.000 1 

𝒖𝟏𝟖 0.143 0.123 0.157 0.389 0.036 0.128 0.015 0.006 0.002 0.001 1 

𝒖𝟏𝟗 0.139 0.036 0.051 0.184 0.062 0.329 0.116 0.038 0.044 0.002 1 

𝒖𝟐𝟎 0.031 0.032 0.164 0.057 0.047 0.089 0.047 0.119 0.413 0.002 1 

𝒖𝟐𝟏 0.083 0.137 0.335 0.077 0.071 0.012 0.016 0.189 0.082 0.000 1 

𝒖𝟐𝟐 0.307 0.108 0.225 0.077 0.134 0.010 0.002 0.117 0.020 0.000 1 

𝒖𝟐𝟑 0.227 0.027 0.596 0.031 0.032 0.014 0.016 0.037 0.022 0.000 1 

𝒖𝟐𝟒 0.113 0.025 0.513 0.024 0.013 0.018 0.009 0.061 0.219 0.004 1 

𝒖𝟐𝟓 0.097 0.074 0.370 0.204 0.051 0.175 0.016 0.003 0.011 0.000 1 

𝒖𝟐𝟔 0.093 0.157 0.202 0.133 0.047 0.247 0.040 0.080 0.003 0.000 1 

𝒖𝟐𝟕 0.153 0.177 0.253 0.194 0.059 0.098 0.042 0.012 0.013 0.000 1 

𝒖𝟐𝟖 0.136 0.097 0.205 0.288 0.050 0.152 0.031 0.013 0.028 0.001 1 

𝒖𝟐𝟗 0.159 0.112 0.262 0.318 0.048 0.062 0.022 0.016 0.000 0.002 1 

𝒖𝟑𝟎 0.091 0.101 0.150 0.206 0.071 0.150 0.115 0.111 0.005 0.001 1 

𝒖𝟑𝟏 0.123 0.083 0.136 0.287 0.047 0.260 0.034 0.009 0.021 0.001 1 

𝒖𝟑𝟐 0.176 0.029 0.139 0.337 0.101 0.148 0.016 0.036 0.019 0.000 1 

𝒖𝟑𝟑 0.064 0.031 0.365 0.144 0.045 0.081 0.070 0.075 0.125 0.000 1 

𝒖𝟑𝟒 0.058 0.016 0.203 0.051 0.033 0.127 0.272 0.087 0.153 0.001 1 

 

Let a set of provinces in Indonesia, 𝑼 = {Aceh (𝒖𝟏), Sumatera Utara (𝒖𝟐), Sumatera Barat (𝒖𝟑), Riau 

(𝒖𝟒), Jambi (𝒖𝟓), Sumatera Selatan (𝒖𝟔), Bengkulu (𝒖𝟕), Lampung (𝒖𝟖), Kepulauan Bangka Belitung 

(𝒖𝟗), Kepulauan Riau (𝒖𝟏𝟎), DKI Jakarta (𝒖𝟏𝟏), Jawa Barat (𝒖𝟏𝟐), Jawa Tengah (𝒖𝟏𝟑), DI Yogyakarta 

(𝒖𝟏𝟒), Jawa Timur (𝒖𝟏𝟓), Banten (𝒖𝟏𝟔), Bali (𝒖𝟏𝟕), Nusa Tenggara Barat (𝒖𝟏𝟖), Nusa Tenggara Timur 
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(𝒖𝟏𝟗), Kalimantan Barat (𝒖𝟐𝟎), Kalimantan Tengah (𝒖𝟐𝟏), Kalimantan Selatan (𝒖𝟐𝟐), Kalimantan Timur 

(𝒖𝟐𝟑), Kalimantan Utara (𝒖𝟐𝟒), Sulawesi Utara (𝒖𝟐𝟓), Sulawesi Tengah (𝒖𝟐𝟔), Sulawesi Selatan (𝒖𝟐𝟕), 

Sulawesi Tenggara (𝒖𝟐𝟖), Gorontalo (𝒖𝟐𝟗), Sulawesi Barat (𝒖𝟑𝟎), Maluku (𝒖𝟑𝟏), Maluku Utara (𝒖𝟑𝟐), 

Papua Barat (𝒖𝟑𝟑), Papua (𝒖𝟑𝟒)}. Consider a set of drinking water sources 𝑬 = {piped water (𝒆𝟏), 

pumped water (𝒆𝟐), bottled water (𝒆𝟑), protected well (𝒆𝟒), unprotected well (𝒆𝟓), protected spring (𝒆𝟔), 

unprotected spring (𝒆𝟕), surface water (𝒆𝟖), rainwater collection (𝒆𝟗), other (𝒆𝟏𝟎)}.  The negative 

parameters are 𝒆𝟓, 𝒆𝟕, 𝒆𝟖, and 𝒆𝟏𝟎. Distribution of households population according to province and 

source of drinking water in 2015 are described in Table 1.  

Therefore, Table 1 is a dual probabilistics soft sets (cf., Definition 3). We run the code of Algorithm 

7 using R version 3.3.1, PC Intel(R)core(TM)-i3 with 4GB RAM, and Windows 7 as operating system. 

The eigen dominan is 330 and the optimal province is DI Yogyakarta. The top 6 provinces are 𝒖𝟏𝟒 >
𝒖𝟏𝟕 > 𝒖𝟏𝟓 > 𝒖𝟏𝟑 > 𝒖𝟐𝟓 > 𝒖𝟏𝟏. 

5. Conclusion 

In this paper, we have acquainted decision making algorithms of probabilistic soft sets and dual 

probabilistic soft sets for positive and negative parameters. We believe that our algorithms can be 

applied either in illustrative examples or in real data sets. We also believe that these procedures deserve 

farther studies such as comparison with separable fuzzy soft sets. 
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